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Abstract

Vicsek fractals are one of the most interesting classes of fractals and the study of
their structural properties is important. In this paper, the exact formula for the
mean geodesic distance of Vicsek fractals is found. The quantity is computed
precisely through the recurrence relations derived from the self-similar structure
of the fractals considered. The obtained exact solution exhibits that the mean
geodesic distance approximately increases as a power-law function of the
number of nodes, with the exponent equal to the reciprocal of the fractal
dimension. The closed-form solution is confirmed by extensive numerical
calculations.

PACS numbers: 89.75.Hc, 05.10.−a, 06.30.Bp, 89.75.−k

(Some figures in this article are in colour only in the electronic version)

The concept of fractals plays an important role in characterizing the features of complex
systems in nature, since many objects in the real world can be modeled by fractals [1]. In the
last two decades, a great deal of activity has been concentrated on the studies of fractals [2, 3].
It has been shown [4–11] that regular fractals capture important aspects of critical percolation
clusters, aerogels, amorphous solids and unusual phase transition in the Ising model. Among
various regular fractals, the Vicsek fractals [12] are a class of typical candidates for exact
mathematical ones and have received much attention. A variety of structural and dynamical
properties of Vicsek fractals have been investigated in much detail, including the eigenvalue
spectrum [13], eigenstates [14], the Laplacian spectrum [15], random walks [16], diffusion
[17] and so on. The results of these investigations uncovered many unusual and exotic features
of Vicsek fractals.
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Figure 1. Illustration of a particular Vicsek fractal V4,2. The open circles denote the starting
structure V4,0.

A central issue in the study of complex systems is to understand how their dynamical
behaviors are influenced by underlying geometrical and topological properties [18, 19].
Among many fundamental structural characteristics [20], mean geodesic distance is an
important topological feature of complex systems that is often described by graphs (or
networks) where nodes (vertices) represent the component units of systems and links (edges)
stand for the interactions between them [21, 22]. Mean geodesic distance is defined as the
mean length of the shortest paths between all pairs of nodes. It has been well established that
mean geodesic distance directly relates to many aspects of real systems, such as signal integrity
in communication networks, the propagation of beliefs in social networks or of technology
in industrial networks. Recent studies indicated that a number of other dynamical processes
are also relevant to mean geodesic distance, including disease spreading [23], random walks
[24], navigation [25], to name but a few. Thus far great efforts have been made to valuate and
understand the mean geodesic distance of different systems [26–31].

Despite the importance of this structural property, to the best of our knowledge, the
rigorous computation for the mean geodesic distance of Vicsek fractals has not been addressed.
To fill this gap, in this present paper we investigate this interesting quantity analytically. We
derive an exact formula for the mean geodesic distance characterizing the Vicsek fractals.
The analytic method is on the basis of an algebraic iterative procedure obtained from the
self-similar structure of Vicsek fractals. Our research opens the way to theoretically studying
the mean geodesic distance of regular fractals and deterministic networks [33–35].

The classical Vicsek fractals are constructed iteratively [12, 15]. We denote by Vf,t

(t � 0, f � 2) the Vicsek fractals after t generations. The construction starts from (t = 0)

a star-like cluster consist of f + 1 nodes arranged in a crosswise pattern, where f peripheral
nodes are connected to a central node. This corresponds to Vf,0. For t � 1, Vf,t is obtained
from Vf,t−1. To obtain Vf,1, we generate f replicas of Vf,0 and arrange them around the
periphery of the original Vf,0, then we connect the central structure by f additional links to the
corner copy structures. These replication and connection steps are repeated t times, with the
required Vicsek fractals obtained in the limit t → ∞, whose fractal dimension is ln(f +1)

ln 3 . In
figure 1, we schematically show the structure of V4,2. According to the construction algorithm,
at each time step the number of nodes in the systems increase by a factor of f + 1, thus, we
can easily know that the total number of nodes (network order) of Vf,t is Nt = (f + 1)t+1.
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Figure 2. A schematic illustration of the iterative construction for Vf,t+1, which is obtained by

joining f + 1 copies of Vf,t denoted as V
(1)
f,t , V

(2)
f,t , . . . , V

(f )

f,t , and V
(f +1)

f,t , respectively.

After introducing the Vicsek fractals, we now analytically investigate the mean geodesic
distance between all the node pairs in the fractals by using a method similar to but different
from that proposed in [9]. We represent all the shortest path lengths of Vf,t as a matrix in
which the entry dij is the geodesic distance from node i to node j , where geodesic distance is
the path connecting two nodes with minimum length. The maximum value Dt of dij is called
the diameter of Vf,t . A measure of the typical separation between two nodes in Vf,t is given
by the mean geodesic distance Lt defined as the mean of geodesic lengths over all couples of
nodes

Lt = St

Nt (Nt − 1)/2
, (1)

where

St = 1

2

∑

i∈Vf,t ,j∈Vf,t ,
i �=j

dij (2)

denotes the sum of the geodesic distances between two nodes over all pairs.
We continue by exhibiting the procedure of the determination of the total distance and

present the recurrence formula, which allows us to obtain St+1 of the t + 1 generation from
St of the t generation. By construction, the fractal Vf,t+1 is obtained by the juxtaposition of
f + 1 copies of Vf,t that are consecutively labeled as V

(1)
f,t , V

(2)
f,t , . . . , V

(f +1)

f,t , see figure 2. This
obvious self-similar structure allows us to calculate St analytically. It is easy to see that the
total distance St+1 satisfies the recursion relation

St+1 = (f + 1)St + �t, (3)

where �t is the sum over all shortest path length whose endpoints are not in the same Vf,t

branch. The solution of equation (3) is

St = (f + 1)tS0 +
t−1∑

m=0

[(f + 1)t−m−1�m]. (4)

Thus, all that is left to obtain St is to compute �m.
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The paths that contribute to �t must all go through at least one of the 2f edge nodes
(such as G,X, Y and Z in figure 2) at which the different Vf,t branches are connected. The
analytical expression for �t , named the crossing path length [9], can be derived as below.

Denote �
α,β
t as the sum of all shortest paths with endpoints in V

(α)
f,t and V

(β)

f,t . For

convenience, we denote by V
(1)
f,t the central branch of Vf,t+1. According to whether or not

the two branches are adjacent, we sort the crossing path length �
α,β
t into two classes: �

1,φ
t

(φ > 1), �
ϕ,θ
t (ϕ > 1, θ > 1, and ϕ �= θ ). For any two crossing paths in the same class, they

have identical length. Therefore, in the following computation of �t , we will only consider
�

1,2
t and �

2,3
t . The total sum �t is then given by

�t = f × �1,2
t +

f (f − 1)

2
× �2,3

t . (5)

To calculate the crossing path length �
1,2
t and �

2,3
t , we give the following definition and

notations. We define external nodes of Vf,t as the nodes that will be linked to one of its copes
at step t + 1 to form Vf +1,t . Let dt denote the sum of length of the path from an external node
of Vf,t to all nodes in Vf,t including the external node itself. We assume that the two branches
V

(1)
f,t and V

(2)
f,t are connected at two nodes X and G, which separately belong to V

(1)
f,t and V

(2)
f,t ,

and that V
(1)
f,t and V

(3)
f,t are linked to each other at two nodes Y and Z that are in V

(1)
f,t and V

(3)
f,t ,

respectively.
In order to determine dt , we should compute the diameter Dt of Vf,t first. By construction,

one can see that the diameter Dt equals the path length between arbitrary pair of external nodes
of Vf,t . Thus, we have the following recursive relation:

Dt+1 = 3Dt + 2. (6)

Considering the initial condition D0 = 2, equation (6) is solved inductively to obtain

Dt = 3t+1 − 1, (7)

which is independent of f .
We now calculate the quantity dt+1. Let K denote the external node of Vf,t+1, which is in

the branch V
(2)
f,t . By definition, dt+1 can be given by the sum

dt+1 =
∑

j∈Vf,t+1

dKj =
∑

u∈V
(2)
f,t

dKu +
∑

v∈V
(1)
f,t

dKv + (f − 1)
∑

w∈V
(3)
f,t

dKw

= dt +
∑

v∈V
(1)
f,t

dKv + (f − 1)
∑

w∈V
(3)
f,t

dKw. (8)

We denote the second and third terms in equation (8) by gt and qt , respectively. Thus,
dt+1 = dt + gt + qt . The quantity gt is evaluated as follows:

gt =
∑

v∈V
(1)
f,t

(dKG + dGX + dXv) = dt + Nt × (Dt + 1), (9)

where dKG = Dt and dGX = 1 were used. Analogously,

qt = (f − 1)
∑

w∈V
(3)
f,t

(dKG + dGX + dXY + dYZ + dZw)

= (f − 1)[dt + Nt × 2(Dt + 1)]. (10)

With equations (9) and (10), equation (8) becomes

dt+1 = (f + 1) dt + (2f − 1) × Nt × (Dt + 1). (11)
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Using Nt = (f + 1)t+1,Dt = 3t+1 −1 and d0 = 2f −1, equation (11) is resolved by induction

dt = 1
2 (2f − 1)(3t+1 − 1)(1 + f )t . (12)

With above obtained results, we can determine the length of crossing paths �
1,2
t and

�
2,3
t , which can be expressed in terms of the previously explicitly determined quantities. By

definition, �
1,2
t is given by the sum

�1,2
t =

∑

i∈V
(1)
f,t ,j∈V

(2)
f,t

dij

=
∑

i∈V
(1)
f,t ,j∈V

(2)
f,t

(diX + dXG + dGj )

= Nt

∑

i∈V
(1)
f,t

diX + (Nt)
2 + Nt

∑

j∈V
(2)
f,t

dGj

= 2Nt

∑

i∈V
(1)
f,t

diX + (Nt )
2, (13)

where we have used the equivalence relation
∑

i∈V
(1)
f,t

diX = ∑
j∈V

(2)
f,t

dGj .

Proceeding similarly,

�2,3
t =

∑

i∈V
(2)
f,t ,j∈V

(3)
f,t

dij

=
∑

i∈V
(2)
f,t ,j∈V

(3)
f,t

(diG + dGX + dXY + dYZ + dZj )

= 2Nt

∑

i∈V
(2)
f,t

diG + 2(Nt )
2 + (Nt)

2dXY

= 2Nt

∑

i∈V
(2)
f,t

diG + (Nt)
2(Dt + 2). (14)

Inserting equations (13) and (14) into equation (5), we have

�t = (f 2 + f )Ntdt + f 2(Nt )
2 +

f (f − 1)

2
(Nt )

2Dt. (15)

Substituting equation (15) into equation (4) and using the initial value S0 = f 2, we can obtain
the exact expression for the total distance

St = 1

6f + 4
(f + 1)t [f 2(f + 1)t (3t+1 + 1)

+ 3(3t+1 − 1)f 3(f + 1)t + 4((f + 1)t − 1)

− 2f (31+t (f + 1)t − 4(1 + f )t + 1)]. (16)

When f = 2, the Vicsek fractals are reduced to a one-dimensional linear chain. In this case, St

expressed by equation (16) can be simplified as St = (3t+1−1)3t+1(3t+1+1)

3 = (Nt−1)Nt (Nt +1)

3 , which
recovers the previously obtained result for linear chain [32]. In addition, for other values of f ,
we have also compared equation (16) with the results of direct numerical computation, both
of which are consistent with each other, see table 1.
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Figure 3. Mean geodesic distance Lt versus network order Nt on a log–log scale. The solid lines
serve as guides to the eye.

Table 1. Sum of geodesic distance St for various f and t. All St are obtained by both equation (16)
and numerical simulations, which completely agree with each other.

f S0 S1 S2 S3

2 4 120 3276 88 560
3 9 516 25 872 1258 560
4 16 1480 117 400 8962 000
5 25 3390 389 700 42 928 920
6 36 6720 1055 460 158 449 536

Then the analytic expression for the mean geodesic distance can be obtained as

Lt = 1

(3f 2 + 5f + 2)[(f + 1)t+1 − 1]
[f 2(f + 1)t (3t+1 + 1)

+ 3(3t+1 − 1)f 3(f + 1)t + 4((f + 1)t − 1)

− 2f (31+t (f + 1)t − 4(1 + f )t + 1)]. (17)

In the infinite system size, i.e., t → ∞
Lt ∼ 3t+1 = (Nt)

ln 3
ln(f +1) , (18)

where the exponent ln 3
ln(f +1)

is equal to the reciprocal of the fractal dimension. Thus, in the
large limit of t, the mean geodesic distance Lt is proportional to the diameter Dt , both of
which increase algebraically with increasing size of the system. In contrast to many recently
studied network models mimicking real-life systems in nature and society [21, 22], the Vicsek
fractals are not small worlds despite of the fact that these fractals show similarity (fractality)
observed in many real-world systems.

We have checked our analytic result against numerical calculations for different f and
various t. In all the cases we obtain a complete agreement between our theoretical formula
and the results of numerical investigation, see figure 3.

To sum up, in complex systems the mean geodesic distance plays an important role. It
has a profound impact on a variety of crucial fields, such as information processing, disease
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or rumor transmission, network designing and optimization. In this paper, we have derived
analytically the solution for the mean geodesic distance of Vicsek fractals which have been
attracting much research interest. Our analytical technique could guide and shed light on
related studies for deterministic fractals and network models by providing a paradigm for
calculating the mean geodesic distance. Moreover, as a guide to and a test of approximate
methods, we believe our vigorous solution can prompt the studies on random fractals.
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